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Producing valuable goods and services is a complex, intricate 
process. One obtains inputs from a multitude of suppliers who 
must honour their contracts and deliver those inputs with-

out them breaking, spoiling or being stolen. These inputs must be 
stored safely and manipulated in interdependent stages using labour 
from workers who may fall ill or shirk their duties, together with 
complex equipment and vast infrastructure that may malfunction. 
These complex interdependencies underlie specialization and trade 
that are the foundation of economic growth and material progress1,2.

Yet this progress, and the disruptions that thwart it, are unevenly 
distributed around the world. In low-income countries, disruptions 
can be frequent, long lasting and severe. They include power out-
ages3,4, worker absenteeism5, failed deliveries of products, water 
shortages, customs delays, damage from natural disasters and epi-
demic disease (Fig. 1). Poor countries also tend to produce simpler 
goods, especially primary resources such as timber, mining and 
subsistence agriculture6–8.

In contrast, in middle- and high-income countries, inputs tend 
to be more reliable and the goods produced tend to be more com-
plex. However, rich economies are not immune to disruptions: 
competition drives firms to build lean supply chains with buffers so 
small that disruptions can cascade around the globe, causing large 
aggregate losses9,10.

Might the mechanisms causing globalized supply chains to 
become fragile also be preventing poor economies from becoming 
more complex and global? This question stretches the limits of our 
understanding of economic growth and complexity. Input–output 
linkages among firms—wherein one firm’s output is another firm’s 
input—are known to have large, nonlinear effects on economies. In 
theoretical models, these linkages propagate changes in productiv-
ity11–14, disruptions15 and bankruptcies16–21. Empirical research on 
industrialized economies finds that supply-chain disruptions often 
lead to lower stock prices and sales growth22–25. These disruptions, 

and the uncertainty that they entail, affect development: they cause 
firms to use less capital15, misallocate inputs12,13 or form shorter 
supply chains20, generally hindering industrialization of the econ-
omy11 and limiting the effectiveness of policy26. However, in these 
models, disruptions are treated as exogenous, and firms interact 
once in a static network. These assumptions preclude the dynamic 
feedback that can generate complex outcomes such as poverty traps 
and periodic cycles.

Modelling dynamic production networks is a challenging prob-
lem involving heterogeneous input–output patterns and input 
elasticities27. Recent models have considered firms that endog-
enously form input–output linkages28–30; others have considered 
firms deciding how to source their inputs in a risky supply chain 
with one31,32 or more33–35 tiers. What is missing is an understanding 
of how fast dynamics in economic networks, such as disruptions 
in supply chains, affect their long-run evolution and their growth 
in complexity.

We aimed to fill this theoretical gap by introducing a simple 
model that captures the complex dynamics of disruptions spread-
ing in an evolving input–output network. The main result was 
that poverty can emerge and reinforce itself: facing an unreliable 
environment of potential inputs, agents choose simple production 
processes that require few inputs, but disruptions remain frequent. 
Escaping this trap requires investing in buffers against disruption, 
such as arranging for extra suppliers or storing inventories of inputs. 
We found empirical support for the prediction that these buffers 
grow and then shrink as economies develop. When they shrink too 
much, disruptions can spike in number, as occurs in lean supply 
chains today. This mechanism also imperils developing economies: 
jumping abruptly to a more complex technology can backfire by 
causing greater dysfunction, suggesting that ‘big push’ policies36 
may benefit from technological gradualism. We suggest that this 
alternative perspective—focused on contagion in evolving supply 
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chains—may shed light on why poor economies are not catching up 
and why some interventions fail.

Model of contagious disruption in an evolving input–output 
network
We considered a large population of agents who represent entre-
preneurs or firms producing goods and services that require inputs 
from other agents. The model framework is meant to correspond 
to a variety of situations that broadly represent the process of coor-
dinating inputs and outputs for economic production: launching 
a business requires intermediate goods from suppliers; coordinat-
ing stakeholder meetings requires a quorum of attendees; repairing 
equipment requires parts supplied by others; and so on.

Our focus on fragility has antecedents in Kremer’s ‘O-ring  
theory’ of economic development, in which a single mistake—such 
as the malfunctioning O-ring that triggered the explosion of the 
Challenger Space Shuttle—can doom a sequence of interrelated 
tasks15. That study shows how fragility can lead to highly skilled 
workers matching with each other. Here, we focus on how people 
respond by using simpler technology or by investing in buffers 
against disruption so that some failures can be endured.

Balls-and-urn model of production and contagious dysfunction. 
At each time t, all agents exist in one of two states. A fraction Ft 
of agents are functional: they recently succeeded in producing and 
can provide inputs to others upon request. The remaining fraction 
1− Ft are dysfunctional: they recently failed to produce and cannot 
provide inputs to others.

Agents become functional and dysfunctional as they succeed 
and fail, respectively, in producing goods or accomplishing tasks. 
Each agent attempts to produce a good requiring τ inputs. Attempts 
to produce a good occur randomly at a constant rate (as a Markov 
process). We do not track types of inputs nor economic sectors. This 
simplification allows us to abstract from which pairs of inputs are 
substitutes by using a simple threshold rule: an agent attempts to 
obtain inputs from m agents in the population, and they succeed in 

producing if and only if at least τ of those m inputs are successfully 
produced and delivered to them (see Fig. 2). We call m the number 
of attempted inputs, and we think of it as the in-degree when view-
ing these interactions as an input–output network.

This threshold rule captures the idea that some inputs are criti-
cal: without them, production halts or fails. For example, the earth-
quake near Japan on 11 March 2011 closed the Hitachi factory that 
produced most of the world’s airflow sensors, a critical input for 
cars. As a result, automobile factories on the other side of the globe 
had to curb production or close10. In the developing world, drip irri-
gation has failed in Sub-Saharan Africa due to disruptions in water 
infrastructure and scarce knowledge about repairs37; adulterated 
fertilizer sold in Ugandan markets yields negative average returns38; 
and Internet-connected kiosks in India fell into disuse because of 
unreliable electricity and insufficient service from operators39.

The simplifications above allow us to describe an evolving input–
output network, together with disruptions spreading on it, using a single 
differential equation for the expected fraction of functional agents Ft:

τ∕ = ≥ −�F t m F Fd d (Binomial( , ) ) (1)t t

for t ≥  0 and integers m ≥  0 and τ >  0. Note that if τ =  0, then 
there is little to model, so we let dF/dt =  0. This framework is a  
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Fig. 1 | Disruptions to the production process tend to be more frequent in poorer, less complex economies. The colour of each dot indicates the country’s 
economic complexity index (ECI)63,64; a red triangle represents a missing ECI value. The black lines are least-squares fits, with per-capita incomes74 on a 
logarithmic scale. The natural disaster risk combines exposure and ability to cope75. The adult mortality rate is the chance that a 15 year old dies before the 
age of 6076. The data in the plots in the top row and in the bottomleft corner are from ref. 4.

Attempts m = 4 inputs; produces
and becomes functional (  ) if 3 ≥ τ

Fig. 2 | Illustration of the model. Agents (drawn as disks) are people or firms 
who are either functional or dysfunctional at any moment in time. Functional 
means that the agent has enough inputs to produce or to accomplish a task 
and that other agents can rely on this agent for inputs. Agents attempt to 
produce a good (or to have a meeting with other people, and so on) using m 
inputs drawn randomly from the population (indicated by the arrows) and 
they succeed when at least τ of those suppliers are functional.
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balls-and-urn model40,41 taken to an infinite-population, continu-
ous-time limit, so that transition probabilities become determinis-
tic rates of change in the mean-field master equation (1) (ref. 42). 
Master equations are used to describe the dynamics of microeco-
nomic actors in social science43 and economics44,45. Our derivation 
of equation (1) is shown in note 1 of the Supplementary Information 
and explained below.

For simplicity, the input–output network is random and 
‘annealed’: in each production attempt, inputs are chosen uni-
formly at random with replacement from the population. This 
annealed network captures the idea that people perform different 
tasks that require different inputs; for example, an engineer may 
fix a machine on Monday and lead a meeting on Wednesday, and 
an entrepreneur may try one business idea this year and another 
next year. Different inputs are required for each step. Later, we 
relax this assumption.

All agents use the same values of (m,τ); that is, they play ‘sym-
metric strategies’. Therefore, the chance of successful production is 
the probability � that a binomial random variable with parameters 
m and Ft is ≥  τ, where τ is the number of critical inputs needed. This 
threshold rule resembles the essential inputs and critical subtasks 
in the ‘O-ring theory’ of Kremer15, but here people can have buffers 
against failures: the number of attempted inputs (m) can exceed the 
number of inputs needed (τ). This threshold rule also appears in 
models of social contagion and collective behaviour46–48, but here 
we have an annealed network, bidirectional changes in state and 
decision-making, which are described later.

Some disruptions may result from causes other than other 
agents’ dysfunction, such as fires, insect outbreaks, weather and 
so on. To capture these exogenous disruptions, we assume that all 
agents independently become dysfunctional for exogenous reasons 
at a small rate ε  (according to a Poisson process). This assumption 
introduces a − ε Ft term to the master equation (1):

∕ = − − − + ɛF t F P F Pd d (1 ) (1 ) (2)t t

= − + ɛP F (1 ), (3)t

where P is the probability that an agent successfully produces, 
τ≥� m F(Binomial( , ) )t . The first term in equation (2) is the rate 1− Ft  

at which dysfunctional agents attempt to produce; each attempt  
succeeds with probability P; if the attempt succeeds, Ft rises; other-
wise Ft stays the same, and vice versa for the second term. Equation 
(2) is derived in note 1 of the Supplementary Information and 
recovers equation (1) with ε  =  0.

The initial amount of dysfunction 1− F0 is exogenous; after that, 
disruptions are entirely endogenous, spreading from supplier to 
customer. Driving this contagion is the assumption that an agent 
delivers an input on request if (and only if) they successfully pro-
duced in their most recent attempt to produce. For example, a 
Ugandan farmer who discovers that their seeds were inauthentic38, 
an Ethiopian farmer whose drip irrigation system fails because of 
upstream failures37 or an automobile manufacturer who failed to 
produce due to missing parts9,10 all may subsequently fail to deliver 
output promised to a customer.

Deciding on complexity τ and buffers against disruption m−τ. 
The threshold τ loosely captures the complexity of the good or ser-
vice being produced: more complex goods require more inputs49,50. 
To capture the incentives to create high-value products, we present 
a simple, reduced-form model in which agents derive utility from 
successfully producing goods that require more inputs. We assume 
that when an agent successfully produces, their induced utility 
grows with the complexity of production; for simplicity, we express 
this utility as τβ, where β∈ (0, 1). The assumption that complexity 

underlies rising productivity is standard in economic models2,49,50. 
For a derivation of τβ, see note 2 of the Supplementary Information. 
We also assume that each attempted input costs α >  0. This param-
eter α represents the marginal cost of finding suppliers, maintaining 
multiple suppliers for the same input51, incentivizing suppliers to 
have multiple manufacturing sites52 or maintaining an inventory of 
inputs53 (for details, see note 3 of the Supplementary Information).

For simplicity, we assume that each agent knows the current 
likelihood Ft that a uniformly random supplier would successfully 
produce and deliver an input on request. Based on that reliability 
Ft, agents revise their strategy regarding how complex a product 
to produce (τ∈ {0, 1, 2,… }) and how many inputs m∈ {0, 1, 2,… } 
are required to attempt to procure in order to produce that good. 
For instance, if suppliers are unreliable (that is, Ft is small), agents 
arrange for redundant inputs (that is, m− τ >  0) provided that they 
can afford it. Agents must commit to a certain technology and pro-
duction technique for a certain amount of time T, so we assume 
that every amount of time T all agents simultaneously update their 
strategy to the ‘best response’, the maximizer (m*,τ*) of the utility 
function:

- τ α β τ τ α= −βm F P m F m( , , ; , ) ( , , ) (4)t t

Thus, agents’ strategies at time t are:

-τ τ α β=
τ≥

m m F( , ) arg max ( , , ; , ) (5)* *
m

kT
, 0

for t∈ (kT, (k +  1)T) where k∈ {0, 1, 2,… }. Together, equations  
(2)–(5) and the initial F0 define the model.

We abstracted from considerations about market equilibrium 
and price formation, hence expressing all payoff magnitudes in 
terms of some fixed numeraire. Only τ goods are used in produc-
tion, even if more than τ of m suppliers are functional, as unused 
inputs are assumed to be perfect substitutes for used ones. In note 
2.2 of the Supplementary Information, we explain three alternative 
interpretations of the relationship between inputs and outputs in the 
production process.

Results
Figure 3 illustrates the three phases of an economy in this model: 
trapped, emerging and rich. To understand the figure, suppose that 
at time t =  0 agents successfully produce and deliver an input only 
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Fig. 3 | Representative phase portrait showing the three phases of a model 
economy. Here, (α,β,ε )!= !(0.1,0.4,0.001). The black, green and red curves 
are the right-hand side of ODE 2 as a function of Ft, with labels indicating 
the best response (m*,τ*) and colours denoting the sign of dF/dt (green is  
dF/dt > 0; black is dF/dt = 0; red is dF/dt < 0). The best responses are 
computed numerically using the method explained in note 4 of the 
Supplementary Information.
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50% of the time (that is, F0 =  50%). Then, from equation (4), agents 
choose the strategy (m*,τ*) =  (3,1), meaning that agents produce a 
good requiring τ* =  1 input, but they arrange for m*− τ* =  2 extra 
suppliers because disruptions are common (1− F0 =  50%). Using this 
strategy in an economy with reliability F0 =  0.5 causes disruptions 
to become less frequent (dF/dt >  0), as indicated by the green curve 
marked ‘3,1’ in Fig. 3.

Figure 3 corresponds to an economy in which agents best respond 
arbitrarily quickly based on the reliability Ft of their fellow agents; 
that is, the best-response timescale T is arbitrarily close to 0. This  
T →  0 limit is more analytically tractable because dF/dt changes  
discontinuously whenever the best response (m*,τ*) changes as 
a function of Ft. We relax this assumption later when we discuss  
fragility in rich economies.

Next, we explain the economy’s three main phases and a pitfall in 
reaching the ‘industrialized’ phase.

Poverty trap with simple technology and frequent disruptions. In 
an economy with frequent disruptions (Ft near zero), agents choose 
to withdraw from the economy by not relying on any inputs from 
others (m* =  τ* =  0). This strategy resembles subsistence agriculture, 
hunting and pastoralism. Such an economy is in steady state: dF/dt 
is equal to 0 from equation (2) and no agent wants to deviate from 
the strategy (0,0).

This steady state also has a basin of attraction (marked ‘poverty 
trap’ in Fig. 3), provided that there are some exogenous sources of 
disruption (ε  >  0). Specifically, for F just above α, the best response 
is (m*,τ*) =  (1,1). That strategy means attempting a task that requires 
τ* =  1 input and requesting that one input from m* =  1 other agent. 
This strategy has no redundant inputs. It succeeds in producing with 
probability P(1,1,F) =  F; so, from equation (2), dF/dt =  F− F− ε  <  0.

Emerging economies’ buffers to disruption rise and then fall.  
If an economy is sufficiently reliable, it begins to develop. For 
instance, in Fig. 3 if α> − − ≈β β− + +F 2 (1 1 2 ) 11%t

( 1) 2 , agents choose 
to produce goods that require some inputs (τ* >  0). Provided that Ft 
is not too close to 1 (a case described later), the agents also arrange 
for some extra inputs (m* >  τ*) in anticipation that some inputs will 
not be functional. This strategy results in the economy becoming 
more functional over time (dF/dt >  0) and producing ever more 
complex goods (τ* rises with Ft).

As this economy develops, two features rise and then fall over 
time: the speed of development dF/dt and the buffer against disrup-
tions m*− τ*. Later, we examine this inverted-U pattern empirically. 
This inverted-U reflects the following ideas. Firms in a very unre-
liable economy need costly buffers against disruption to produce 
even simple, low-value goods (such as goods with complexity τ* =  1). 
The economy barely manages to produce such simple goods using 
the small amounts of redundancy afforded by the low earnings (for 
example, with redundancy m*− τ* =  2). When the economy is more 
reliable (higher Ft), more complex tasks become feasible with large 
buffers against disruption, such as complexity τ* =  3 with buffer  
m*− τ* =  4. Finally, as the economy becomes maximally reliable  
(Ft approaches 1), agents economize on their costly buffer against 
disruptions (m*− τ*), which leads to new vulnerabilities.

Rich yet fragile. When the economy becomes very reliable (large 
Ft), agents produce very complex goods requiring many inputs 
(large τ*). Yet this high reliability also induces agents to economize 
on their buffers to disruptions. In fact, when Ft is close to 1, they 
eliminate their buffer (m* =  τ*). Then, disruptions spread like a virus 
to which no one is immune: Ft falls, as indicated by the red curves in 
the bottom-right corner of Fig. 3, where dF/dt <  0. Falling Ft means 
that more and more agents are unable to produce and the drop in 
output resembles a recession. Such downturns occur generically 
in rich, highly functional economies: theorem 1 in note 5 of the 

Supplementary Information shows that the state Ft =  1 (a completely 
functional economy) is unstable to perturbations. In our model, a 
rich, highly functional economy is ‘fragile’ in the sense that there 
are large values of Ft close to 1 for which dF/dt <  0. This ‘rich yet 
fragile’ phenomenon accords with recent events: firms face pressure 
to build leaner supply chains, to invest in smaller buffers against 
disruptions and to produce ever more complex goods, resulting in 
occasional cascading disruptions9,10.

What happens after Ft begins to fall depends on how quickly 
agents best respond and whether the best response is discrete. If 
agents commit to a strategy for a positive amount of time T >  0, the 
economy’s reliability Ft falls until either (1) the economy enters the 
poverty trap (which occurs only for very large T) or (2) agents best 
respond in a way that causes Ft to begin to rise. Ft can rise because 
agents produce simpler, lower-value goods (smaller τ) or because 
they increase the buffer against disruption (larger m). If m and τ 
are discrete (as considered here) and T >  0, the economy can cycle: 
after Ft rises for a while, agents best respond again, and because 
their economy is quite reliable they choose to produce very complex 
goods or to decrease their buffer against disruption, and the process 
can repeat. If the decision variables m and τ were made continuous, 
or if T →  0, the economy may settle onto a value of F smaller than 1.

This fragility of rich economies complements theories of ‘aggre-
gate fluctuations’14,27,54–57. Those theories show how exogenous 
shocks to firms can result in large changes in the total production 
in the economy. One reason is heterogeneity: some firms and sec-
tors are much larger55 or more connected14,56 than others, so a small 
shock to these important firms can have large consequences. The 
models in14,55–57 are static and timeless, whereas our model is inher-
ently dynamic, with most ‘shocks’ caused by the endogenous fail-
ure of other firms. Another reason for aggregate fluctuations is that 
firms’ inventories self-organize to a critical point54. In the model in 
ref. 54, firms request inputs from suppliers and these requests spread 
through a fixed network. Here, firms also request inputs from sup-
pliers, but disruptions (that is, failures to produce due to insufficient 
functional inputs) spread contagiously in a network that changes 
over time.

Overshooting complexity can backfire. The core mechanism 
that causes downturns in the rich economy also makes it difficult 
for emerging economies to become rich and complex themselves. 
Specifically, if an economy tries to ‘prematurely jump’ to a more 
complex technology, it can slide backwards and become more 
dysfunctional. To make this idea precise, suppose that agents do 
not use the best response (m*,τ*), but instead attempt a more com-
plex strategy that requires s more inputs: (m* +  s,τ* +  s). The buffer 
against disruptions remains the same; it is still m*− τ*. The differ-
ence is that agents try to produce goods that require more inputs or 
they try to produce the same good as before but using technology 
that depends on more inputs, such as drip irrigation instead of tra-
ditional irrigation37.

Figure 4 shows that this strategy (m* +  2,τ* +  2) often results in 
dysfunction rising over time (dF/dt <  0), as indicated by the red 
curves. In these intervals with dF/dt <  0, agents are ‘overshooting’  
in complexity: they are attempting a production process more 
complex than the surrounding system can support. This over-
shooting echoes failures to adopt complex technologies in devel-
oping countries because the technologies depend on myriad 
inputs prone to disruption, such as drip irrigation systems37 and 
Internet kiosks39.

Emerging economies are especially vulnerable to overshooting 
in complexity: notice in Fig. 4 that dF/dt <  0 for many intermediate 
values of Ft. As a result, the poverty trap in Fig. 4 is dramatically 
larger than when agents use the best response (compare with Fig. 3). 
For example, an economy with Ft near 50% can fall into the poverty 
trap if it overshoots in complexity for a sufficiently long amount 
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of time. In contrast, a rich economy can typically accommodate a 
jump in complexity without causing dysfunction to rise: in Fig. 4 
there are many large values of Ft with dF/dt >  0.

Comparing Figs. 3 and 4, we see the benefit of gradual growth in 
technological complexity. This prescription is at odds with the classic 
idea of a ‘big push’ of simultaneously industrializing many sectors of 
an economy36: a big push overcomes coordination problems, but it 
can add fragility by introducing complex technologies that depend 
on unreliable inputs. This prescription for slow, gradual reform mir-
rors the suggestions given by a model of trust and social capital58.

Phase diagram. To demonstrate that the phenomena in Fig. 3 are 
rather generic, Fig. 5 shows the sign of dF/dt and the best response 

(m*,τ*) for many values of the parameter α, the marginal cost of each 
attempted input. A poverty trap occurs for Ft∈ (0,α); the boundary 
Ft =  α is the indifference curve between (m,τ) =  (1,1) and (0,0). If the 
cost to arrange for an input is too high (α >  1/4 in Fig. 5), the only 
long-run outcome is poverty. Otherwise, there exists a good out-
come in the long run in which the economy is complex and highly 
functional, and buffers against disruptions m*− τ* tend to rise and 
then fall as the economy approaches this rich state.

However, there are pitfalls in reaching this rich state. One pit-
fall is the ‘overshooting’ described above. Another is to decrease  
the cost α of each attempted input. The marginal cost α is exog-
enous, but it could change if, for example, communications tech-
nology were to make it easier to arrange alternative suppliers. 
Decreasing α can trigger an escape from the poverty trap if it puts 
the economy in the green region in Fig.  5. However, it can also 
make the economy more dysfunctional: if α is decreased into the 
red region, where agents choose m* =  τ* =  1, dysfunction rises (pro-
vided that exogenous failures occur; that is, ε  >  0). The intuition 
is that decreasing α incentivizes people to attempt more complex 
production using more inputs (higher τ*), which can lead to more 
failure than success, resulting in more frequent dysfunction in the 
new steady state (lower Ft). If policymakers sense this feedback,  
they may avoid actions that decrease α, keeping the economy stuck 
in the trap.

Countervailing effects of keeping functional suppliers and  
choosing popular suppliers. The model presented above is simpli-
fied by the assumption that agents choose new suppliers uniformly 
at random every time they try to produce. At the other extreme, 
many models of economic cascades assume a rigid input–out-
put network14,16,17,19–21. To explore a more realistic middle ground 
between these extremes, in note 6 of the Supplementary Information 
we modify the choice of suppliers in two ways: (1) agents tend to 
keep functional suppliers and (2) they bias their search towards 
suppliers who already have many customers (that is, preferential 
attachment). These changes do not affect the qualitative results 
insights of the model, but they do have two interesting effects that 
we illustrate using numerical simulations in Supplementary Fig. 1. 
One effect is that the economy is less likely to fall into the trap. It is 
straightforward that a tendency to retain functional suppliers helps 
Ft grow. More interestingly, a tendency to choose popular suppliers 
also helps Ft grow: because functional agents tend to accumulate 
customers, having many customers is correlated with being func-
tional. However, these two tendencies can generate fragility. Once 
the economy is complex and highly functional, it can rely on very 
few agents who supply almost everyone. When those ‘supplier hubs’ 
become dysfunctional (because they rely on dysfunctional suppli-
ers or because they suffered a rate-ϵ  exogenous failure), the brittle 
economy can undergo a severe downturn and cascading disrup-
tions. In summary, what makes an economy more likely to emerge 
from the pull of poverty is precisely what makes the economy fragile 
upon becoming complex.

Empirical support. Input inventories rise and then fall as econ-
omies become more complex. There are scant data—especially 
in developing countries—on supply-chain disruptions and 
the responses to them. Relevant data from the World Bank’s 
Enterprise Survey include the number of days of inventory that 
firms keep of their ‘main input’ (that is, their highest-value 
input)4. Stockpiling inputs is one costly way to mitigate the risk 
of disruptions in one’s supply chain31, so it loosely corresponds 
to our model’s buffer against disruption m*− τ*. Macroeconomic 
research has focused on inventories of finished goods, but inven-
tories of inputs have drawn increasing attention59,60 and some 
models of input inventories also consider intermediate goods and 
supply chains61,62.
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Recall from Fig. 3 that our model predicts that buffers against 
disruptions to inputs (m*− τ*) tend to rise and then fall as economies 
develop. To test this qualitatively, we plotted in Fig.  6a the input 
inventory of firms averaged at the country level for 95 countries for 
which we have an estimate of the complexity of the economy63,64. 
This economic complexity index was calculated from the bipar-
tite network of countries and the products they export8. We found 
that the input inventory had a statistically significant inverted-U 
relationship with the complexity C of an economy’s production.  
A least-squares fit of inventory with γ0 +  γ1C +  γ2C2 has lγ = − .3 142 , 
with P =  0.02 (see Fig. 6a). This relationship qualitatively matches 
the inverted-U exhibited by the model (Fig. 6b).

Case study: drip irrigation. The reported uneven success of drip 
irrigation in different countries37 illustrates the assumptions and 
messages of this model. Drip irrigation applies water directly to 
roots at a small, consistent rate, which increases efficiency and 
transforms land from arid to arable. The technology is delicate and 
complex because it depends on a broad system of inputs: it requires 
high-quality water to be delivered at the right pressure in pipes and 
tubes that match the local soil, crop and weather. Its equipment 
needs expert advice and repair. There is little buffer against mal-
function because crops fail quickly in dry soil if the water flow is 
interrupted. In our model, drip irrigation resembles a high thresh-
old (high τ) technology (compared with rainwater), for which there 
is little buffer against disruptions (m− τ). As described by Garb 
and Friedlander37, drip irrigation has been “spectacularly success-
ful” in Israel, but “the very same hardware often turned out to be 

completely useless in the sub-Saharan African context”. Farmers in 
Israel enjoy an “extensive infrastructural network so pervasive and 
successful as to be nigh invisible”. Their counterparts in Ethiopia 
and Zambia had equipment from the same company, but they faced 
problems in the surrounding socio-technical system (of expertise, 
supply of water, and so on). Many farmers in sub-Saharan Africa 
are “gradually convert(ing) (their farms) back to furrow irrigation 
as each block of the buried drip irrigation fails”. Expressed in the 
language of our model, dysfunctional inputs (low F) can result in 
crops failing and farmers choosing simpler, less productive technol-
ogy (lower τ). Drip irrigation has succeeded in poor regions (such 
as India) not because the technology was simplified but because of 
sufficient support from the surrounding socio-technical system37.

Discussion
Poverty traps have long been used to explain disparities in incomes 
across countries and to justify a ‘big push’—a coordinated invest-
ment in many sectors to unleash growth36,65–67. Yet many big pushes 
have failed68 and understanding why is paramount.

Our model views industrialization as mutually reinforcing sup-
ply chains, broadly defined, that become more complex over time. 
Disruptions in these supply chains can spread contagiously. This 
systemic fragility can cause complex technologies to fail. Even if all 
firms coordinate their industrialization (as suggested by big push 
theories36,66), if the firms jump too far in technological complexity 
without sufficient buffers against disruptions, the economy can slide 
backwards, becoming poorer and less reliable. As in other complex 
systems69, going slower may result in collectively going faster.

This work sits at the intersection of competing theories of eco-
nomic development. According to research on poverty traps36,65–67, 
positive feedback loops keep populations stuck in poverty and 
escaping these traps requires substantial investments. According to 
research on institutions, differences in the rules of the game (such 
as property rights and rule of law) explain why economies have 
diverged70,71. Our model provides a bridge between these views. 
Because some inputs for production are from government actors, 
our model is consistent with the institutional view of development: 
better institutions may imply fewer disruptions, less uncertainty 
and, hence, a greater appetite for complexity. Consistent with the 
poverty trap literature, our model has multiple equilibria. However, 
whereas poverty traps typically suggest making a large investment, 
we find reason for caution: without a focus on the reliability of the 
surrounding system, big changes fail. Interventions to many parts 
of a system may be needed. Unreliability affects economic perfor-
mance in a multifaceted way, involving risk72, network contagion, 
technology adoption37 and psychology73. Understanding their inter-
play can elucidate the causes of persistent poverty.

Methods
In note 4 of the Supplementary Information, we show computations of the finite 
set of strategies that could be a best response for a given α, β and Ft. This derivation 
enabled the computations used to make Figs. 3–5 and 6b.

Code availability. The code used to produce the results of this study is 
available from the GitHub repository at https://doi.org/10.5281/zenodo.823260. 
Figures 1–6 were created in Wolfram Language version 11 (https://www.wolfram.
com/language/new-in-11/) and can be read free of charge using the Wolfram 
Computable Document Format Player (https://www.wolfram.com/cdf-player/) or 
run free of charge using the Wolfram Cloud (https://www.wolfram.com/cloud/). 
Supplementary Fig. 1 was created using Python (3.5.2) (https://www.python.org/
downloads/release/python-352/) and NumPy (1.11.3) (https://pypi.python.org/
pypi/numpy/1.11.3).

Data availability. The data that support the findings of this study (that is, 
the empirical data used in Figs. 1 and 6a) are available from the original 
sources4,63,64,74–76 (specifically, from ref. [75]: data in the columns ‘Country’ and 
‘WorldRiskIndex’; and from ref. [76]: data on adult mortality of both sexes in 2013) 
and the GitHub repository associated with this paper at https://doi.org/10.5281/
zenodo.823260.
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Fig. 6 | Qualitative match between empirical data on input inventories and 
the model’s prediction that buffers to supply-chain disruptions rise and 
then fall as economies develop. a, Input inventories of firms, averaged at the 
country level4, have an inverted-U relationship with the complexity of the 
economy63,64; P!= !0.022 for the C2 coefficient; R2!= !0.063; n!= !95 countries 
labelled by United Nations ISOalpha3 code (https://unstats.un.org/unsd/
methodology/m49/); 95% mean prediction band shown in gray.  
b, Redundancy versus complexity for α!= !0.1, ε  != !0.001 and five values of β, 
each a different colour. The curves show least-squares fits to δ0!+ !δ1τ*!+ !δ2τ*2. 
The data are dispersed by ×& 00 11( , 0.008 ) to indicate density.
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