News

Bonds Lab

NIMBioS Working Group Convenes For Optimal Control of NTDs

05 / 11 / 2017

NIMBioS Working Group: 

Optimal Control of NTDs

Working group photo.
Meeting 1 participants: Back row (L to R): Jim Sanchirico, Nourridine Siewe. Renato Casagrandi, Chris Hoover, Calistus Ngonghala, Matt Bonds; Front row (L to R): Justin Remais, Lorenzo Mari, Sanna Sokolow. Guilio De Leo, Suzanne Lenhart, Marisa Eisenberg.

Topic: Disease ecology, health and the environment: Optimal control of neglected tropical diseases using network models incorporating human movement and river connectivity

Meeting dates: May 8-10, 2017

Organizers:
Giulio De Leo, Biology, Hopkins Marine Station, Stanford Univ.
Calistus Ngonghala, Mathematics and Emerging Pathogens Inst., Univ. of Florida, Gainesville
Justin Remais, School of Public Health, Univ. of California, Berkeley

Objectives: Neglected Tropical Diseases (NTDs) such as amebiasis, Chagas disease, hookworm, leishmaniasis, and schistosomiasis affect more than 1.4 billion people worldwide. Their impacts—expressed as mortality, morbidity, reduced educational and employment opportunities, or social stigma—tend to be greatest among the global rural poor. Controlling NTDs is particularly challenging because of a lack of vaccines that can provide life-long immunity, and the existence of important environmental reservoirs where pathogens persist even as populations are successfully treated for their infections. After mass drug administrations (MDA) of the population at risk, treated people are commonly re-exposed to the parasite or pathogen in the environment, resulting in an endless cycle of treatment and reinfection. Two and a half billion dollars are currently disbursed yearly in tropical and subtropical regions in efforts to control NTDs. Such funding and control efforts are directed mainly toward MDA, with little theoretical understanding of the dynamics of elimination, nor of the conditions for optimal, cost-effective intervention. The goal of this working group is to investigate cost-effective NTD control and elimination measures through the application of optimal control theory, and through the use of cutting-edge computational techniques applied to a range of mathematical transmission models exhibiting increasing levels of complexity. The group will assess the cost-effectiveness of alternative strategies for NTD elimination in addition to MDA, as well as innovative and creative ecological solutions aimed at interrupting environmental transmission through water, sanitation and hygiene interventions (WASH) and biological control of free-living stages of pathogens and/or intermediate hosts.